2020 Biophysics Graduate Orientation: Program Overview

Jeffery B. Klauda and Arpita Upadhyaya Graduate Directors

Welcome to Maryland!

Why UMD? (Location, Location, Location)

Location: Quality of Life

Seasonal but comfortable climate year-round

Many cultural events, attractions in the Washington DC area

Beaches (MD/DE), mountains (VA) are just 2-3 hours away by car

Ph.D. Program in Biophysics

Total Time to Degree is roughly 4.5-5 Years

- Year 1 (Fall/Spring): Take courses, TA, and Lab rotations
- Year 1 (Summer): Full time focus on research (work hard and make initial progress) & Qualifying exam (August)
- Year 2 (Fall/Spring): Continued focus on research
- Year 2 (Summer): Make significant headway on research
- Year 3 (end of semester 5): Defend Ph.D. proposal
- Year 3: Submit manuscripts and go to conferences
- Year 4-5: Finalize research, write dissertation, find a job and defend your dissertation

Lab Rotations: Overview

Format

- Three lab rotations in the Fall and Spring semester of the first year (with BIPH faculty)
- Research presentations at the end of each rotation

Why?

- Will allow you hands-on experience working in a potential advisor's lab and better understand their research and lab culture
- Faculty will get to know you better
- Help you decide between experimental versus computational research and find a thesis advisor

Research in Biophysics at UMD

Faculty in our Program come from different Departments

College of Computer, Mathematical, and Natural Sciences

Departments: Biology, Cell Biology, Chemistry/Biochemistry, Mathematics, Physics

A. James Clark School of Engineering

Departments: Bioengineering and Chemical and Biomolecular Engineering

Research areas span a broad range of topics

Computational Research

High Resolution: Quantum, atomic detail and molecular levels

Cooling

Cooling

O.08

Cooling

O.07

Cooling

O.08

O.07

O.06

O.08

O.01

O.02

O.01

O.02

O.01

O.02

O.03

O.04

Normalized water count

Pratyush Tiwary

Silvina Matysiak

Coarse Resolution & Theoretical: cell mechanics, systems-level biology and developing theories across levels

Garegin Papoian

Chris Jarzynski

Molecular Modeling: Cell Membranes and Associated Proteins

Cell Membranes

Outer Membrane of E. Coli¹

Plasma Membrane of Yeast

Stratum Corneum
Layer of Skin²

Jeff Klauda

- Modeling of organism and organelle membranes at physiological concentrations^{1,2}
- Dimerization of proteins involved in neuronal, bone and cancer growth³
- COVID-19 Research on Spike Protein⁴
- Activation of the Serotonin Receptor⁵
- Peptide-membrane interactions with applications to anti-microbial peptides (AMPs)⁶

Membrane-Associated Proteins

 $Plexin A3\ homodimerization^3$

COVID-19 Spike4

Serotonin Receptor⁵

Peptide-membrane Binding⁶ and AMPs

¹Biophys. J. **106**: p2493 (2014). ²JACS. **141**: p16930 (2019). ³Biochem. **55**: 4928 (2016). ⁴https://doi.org/10.1101/2020.09.28.317206. ⁵PNAS. **117**: p405 (2020). ⁶JPCB. **122**: p9713 (2018).

Experimental Research

Biophysics research at the interface: across multiple scales

Colenso Speer

- Molecular and structural basis of developing neural circuits
- Super-resolution imaging of synaptic connectivity and function in neurons

Kimberley Stroka

- Cellular microenvironment engineering
- Interplay of chemical and mechanical cues in disease

Wolfgang Losert

- Dynamics of complex biological systems
- How topography and electric fields modulate cell migration

Sergei Sukharev

- Biophysics of mechanosensation and osmoregulation
- Structure function relationships in mechanosensitive channels

Gregg Duncan

- Lung airway microphysiology
- Nanomaterials and soft matter approaches for interfacial interactions in lung airway surfaces

Mechanobiology of immune response and gene regulation

Immune receptor dynamics

Regulation of T & B cell signaling

Biophys J. 2012, Nature Comm., 2020

Gene regulation

Imaging of transcription factor dynamics in live cell nuclei

Arpita Upadhyaya

arpitau@umd.edu

Cellular Force generation

Mol. Biol. Cell 2015 PNAS, 2018

How do cells sense and respond to physical cues?

- Stiffness
- Topography
- Mobility

Techniques:

Single molecule imaging
Traction force microscopy
Super-resolution microscopy
Computational image analysis

Cytoskeletal dynamics

Mol. Biol. Cell 2018

Molecular Cell, 2019

http://www2.physics.umd.edu/~arpitau/

Weekly Biophysics Seminars

- Biophysics Seminars on cutting edge research from top scientists in the field
- Student lunch with speaker on the day of the seminar
- Opportunity for students to interact with national and international scientists from many institutes

Where Biophysics students have gone after graduation

Hongdian Yang – Faculty member at University of California, Riverside

Ruillang Bai – Faculty position at Zhejiang University, China

Shaon Chakraborty – Faculty position at National Center for Biological Sciences, India

Kyemyung Park – Faculty member at Yonsei University, Korea

Xue Fei – Postdoctoral Fellow at MIT

Eleanor Ory – Postdoctoral Fellow at University of Maryland School of Medicine

Huong Vu – Postdoctoral Associate at University of Texas, Austin

Jonathan Cwik - Postdoctoral Associate at MRC Laboratory of Molecular Biology, UK

Haiqing Zhao – Postdoctoral Associate at Columbia University

Alison Leonard – Postdoctoral Associate at University of Delaware

Hongcheng Xu – Software Engineer at Google

Hao Wu – Postdoctoral Position at Cornell Medical School

Stephanie Miller – Postdoctoral Researcher at University of California San Francisco

Simona Patange – Postdoctoral Research Associate at NIST

Deborah Hemingway – CEO at Leon Scientific

John Giannini – Postdoctoral fellow at National Eye Institute

NCI-UMD PARTNERSHIP FOR INTEGRATIVE CANCER RESEARCH

Computation and Mathematics for Biological Networks

Contact Info

Our Contact Info:

Dr. Jeffery (Jeff) Klauda Phone: (301)405-1320

Email: jbklauda@umd.edu

Dr. Arpita Upadhyaya Phone: (301)405-9939

Email: arpitau@umd.edu